9.6 Implementation of the Hierarchical Database, 451

DUE an occurrence of its logical parent is inserted in the physical database (assume
that BOOK_COPY is a root node of a physical tree).

Consider the following statements to insert in the database information to indi-
cate that Cook has borrowed copy 3 of a book with Call_No 1235 (entitled Anne of
Green Gables by Montgomery) from the Lynn branch:

BOOK_DUE.Call_ No = '123';
BOOK_DUE.Copy-No = 3;
BOOK_DUE.Branch_Id = 'Lynn’;
BOOK_DUE .Status = 'Lent’;
BOOK_DUE.Due_Date = 12/28;
insert (BOOK_DUE)

where (CLIENT.Client_No = 237');

The last statement will succeed if an occurrence of the BOOK_COPY exists,
and in this case the BOOK_COPY .Status is updated to lent. If no occurrence of the
record BOOK_COPY exists, then depending on the rules specified for BOOK_
COPY, the operation will succeed or fail. In the former case, an occurrence for
BOOK_COPY will be inseted in the database. The information for this occurrence
is available in the record BOOK_DUE.

Deleiing a CLIENT may or may not succeed depending on the rules specified
for CLIENT and whether there are any volumes outstanding with the CLIENT. If
the rule specified for CLIENT is physical and if the client has a number of books on
loan, the attempt to delete a client will fail. If the rule specified is either logical or
virtual, the occurrence is made inaccessible. as a CLIENT record occurrence. How-
ever, it remains_accessible via VIR_CLIENT.

Finally, modification of certain fields in the records are not allowed. For exam-
ple, the Call_No and the Client_No fields, which are used to establish the logical
parent/child record occurrence association, cannot be'mogiiﬁed.

Replacement of the other fields of CLIENT can always be done. However, re-
placement of a field of BOOK_DUE could affect the logical parent BOOK_COPY
and would succeed if the option specified for BOOK_COPY is virtual.

implementation of the _Hlorilrchical Database

Each occurrence of a hierarchical tree can be stored as a variable length physical
record, the nodes of the hierarchy being stored in preorder. In addition, the stored
record contains a prefix field. This field contains control information including point-
ers, flags, locks, and counters, which are used by the DBMS to allow concurrent
usage and enforce data integrity.

A number of methods could be used to store the hierarchical database system.
The storage of the hierarchical trees in the physical medium affects not only the
performance of the system but also the operations that can be performed on the
database. For example, if each occurrence of the hierarchical tree is stored as a
variable length record on a magnetic tape like device, the DBMS will allow only
sequential retrieval and insertion or modification may be disallowed or performed
only by recreating the entire database with the insertion and modification. Storage of

452 Chapter 9 The Hierarchical Data Model

Figure 9.18 Hierarchical definition tree.

B/I\D
SN SN\

the database on a awrect access device allows an index structure to be supported for
the root nodes and allows direct access to an occurrence of a hierarchical tree.

The storage of one occurrence of the hierarchical definition tree of Figure 9.16
using the variable length record approach is given in Figure 9.17.

The hierarchy can also be represented using pointers of either preorder hierar-
chical type or child/sibling type. In the hierarchical type of pointer, each record
occurrence has a pointer that points to the next record in the preorder sequence. In
the child/sibling scheme each record has two types of pointers. The sibling pointer
points to its right sibling (or twin). The child pointer points to its leftmost child
record occurrence. A record has one sibling pointer and as many child pointers as
the number of child types associated with the node corresponding to the record.
Figure 9.16 gives the hierarchical definition tree and the one occurrence of this hi-
erarchical definition tree is given in Figures 9.18 and 9.19. In Figure 9.18 the preor-
der hierarchical pointers are shown, whereas in Figure 9.19 we present the same
database using the child/sibling pointers.

Figure 9.17 Sequential storage of hierarchical database.

iﬂl by en ey fi e ey f2 ¢ g h d G ki d ju jn kyu kzz%

Figure 8.18 Preorder hierarchical pointers.

“1

s R

ey cp—>) 81— by =k

€)— €3—f 21— 23— k;

9.7 Additional Features of the Hierarchical DML 453

Figure 9.19 Child/sibling pointers.

— Yaw—
v
'

—

ey---Pepn 1) g hy i k

ey---»epn f l---» 2k

9.7 Additional Features of the Hierarchical DML

Consider the hierarchical definition tree of Figure 9.20. Access to a dependent record
type is via a path beginning at the root node and after traversing through intermediate

nodes, ending at the required record type. Such paths are called hierarchical paths.
Access to record type E, in the hieraichical defimition tree of Figure 9,20, requires a
traversal through nodes A and B. '

In addition to the data manipulation statement discussed earlier, the hierarchical
data manipulation language needs a number of functions for better control of navi-
gating through the database. This saves both processing and program development
time.

One such feature is the use of control codes associated with the get statements.
We will not give the exact syntax of these statements or describe them in detail, but
we will highlight their usefulness. Control codes are associated with the get state-
ment to perform additional functions. These include retrieving all records in a hier-
archical path, locating first occurrence, locating last occurrence, and maintaining the
currency indicators at a given level of the hierarchy or for the hierarchical path to !
this level. '

Figure 9.20 A sample hierarchical definition tree.

Chapter 9 The Hierarchical Data Model

Figure 9.21

The need to retrieve all records in a hierarchical path can be illustrated by the
following example. Suppose we need to find an occurrence of a record type E and
also list its parentage. Instead of successively retrieving the correct occurrence of
record type A, then record type B, and subsequently record type E, we can combine
these operations in one statement as given below:

get next *D where A = A, *D where B = B,,, where E = E,,

Here the control code is specified by *D and it indicates. that the corresponding
occurrence of the record types in the hierarchical path are also to be retrieved and
placed in the UWA in the appropriate record template.

If we wanted the last occurrence of record type D in a hierarchical path, the
following version of the get statement could be used. Here the last sibling in the D
record type is indicated by the *L control code.

get unique *L D within parent A = A, and B = B,,

A similar command to back up to the first sibling in a record type, while per-

.forming a sequential retrieval using the get next within parent statement, is pro-

vided by the *F command code. :

Another featyre of the hierarchical DML is the possibility of maintaining and
navigating through multiple dependent record types at each level of a hierarchical
path. To understand this facility, consider the database shown in Figure 9.21. Sup-
pose we want to list the dependent record types of B, in the order of Dy,,, E;j;,
Dy, E) 12, and so on. The following statements would cause a problem:

get next where A = A], where B = B”
get next within parent D

- get next within parent E
get next within parent D

Data corresponding to the hierarchical definition tree of Figure 9.20.

9.8 Concluding Remarks 455

Tb}f /is so, because the database uses hierarchical pointers and for the second get
‘request for record type D, it would access either the record occurrence D5, or return
an error condition indicating that there are no more record types.

If we use multiple positioning, the position within the record type D would be
maintained. Consequently, this would give us the correct occurrence, Dy, of the
record type D.

Concluding Remarks

In the hierarchical model, we have to select the order of entities involved in the
application into a hierarchy. This involves choosing the root node at each level. The
ordering of the nodes at each level is also significant. Because we are unaware, at
database design time, of the users’ intent and range of needs, the number of different
possible hierarchies with a sizable number of record types is enormous. Choosing
among these hierarchies would be a formidable task. As a case in point, with two
record types, the number of different hierarchies is two; with three record types, the
number of different hierarchies is 12, and so on. Only some of these hierachies are
suitable and the optimum for one application could turn out to be far from satisfac-
tory for another application.

We face another problem in converting cyclic relationships into hierarchies. A
cycle of relationship, for example,

BRANCH «— DEPT_SECTION «— EMPLOYEE «— BRANCH

in the E-R diagram of Figure 9.2 cannot be expressed directly in the form of an
ordered tree. However, we have resolved this cycle by the hierarchies:

BRANCH — DEPT_SECTION — EMPLOYEE
and ’
BRANCH — EMPLOYEE — DEPT_SECTION.

This resolution requires the use of replication or virtual records for the record types
DEPT_SECTION and EMPLOYEE at the lowest level of the above hierarchies. In
general, any set of relationships in E-R diagrams that forms a cycle can be converted
to a number of rooted trees, using either replication or virtual records.

The hierarchical model inherently requires that the data in the database be struc-
tured in the form of. a tree. However, some records in the database represent entities
involved in more than one relationship. Furthermore, some of thesé relationships are
of the many-to-many type. The implementation of these relationships using the hier-
archical data model leads to a number of hierarchical trees that are unconnected
except via'a DBMS-supplied dummy root record. Such a collection of hierarchical
trees is sometimes called a set of spanning trees. Hierarchical data manipulation
facilities do not provide an easy means of accessing several hierarchical trees simﬁl-
taneously. The virtual record facility allows the hierarchical data manipulation lan-
guage to access data belonging to separate hierarchical trees. The virtual record fa-
cility also allow a record type to be included in several hierarchies without actual
replication.

The paired bidirectional logical relationship, with its associated symmetrical vir-
tual records, is one way to implement a many-to-many relationship. The database

Chapter 9. The Hierarchical Data Model

B

system is aware af the repiication of the common data 1n such virtual records and
the need to maintain consistency.

However, the virtual record scheme, even without any intersecuion data fielas,
requires physical support in the form of related pointers to and from the logical
parent. Virtual records cannot be defined dynamically but require some database re-
organization to be defined and implemented in conjunction with the DBA.

Performance considerations may require the hierarchical database to have an
index not only on the key field of the root node of the hierarchical tree but also on
other fields of the root node of a hierarchical tree or subtree. This type of index,
called a secondary index, is particularly useful for logical parent records.

The hierarchical model is considered to have a built-in bias that is physically
implemented. This bias may not be good for all applications. Consequently, a logical
structure using secondary indexes is useful. The use of virtual records avoids repli-
cation, and provides a logical view of the database. Unfortunately, the implementa-
tion of this is not as straight forward as a view in the relation data model. The virtual
record facility requires support of the underlying physical database and hence pre-
planning and involvement of the DBA at database design time. Consequently, new
virtual records may not be defined. The update operations on the database and the
records that are associated with a virtual record are much more complex than the
operations on DBTG sets.

The hierarchical model, through one of its major implementations 1n the IMS
system from IBM, has the lion’s share of the current corporate databases. IMS has
matured over the years and the applications have been tuned to an optimum level of
performance. The results of attempts to move some of these applications to a rela-
tional model have been mixed. However, a number of companies are marketing prod-
ucts to provide a relational user front end, that interfaces with the existing hierarchi-
cal DBMS.

Summary

The hierarchical data model consists of a set of record types. The relationship be-
tween two record types is of the parent/child form, expressed using links or pointess.
The records thus connected form an ordered tree, the so-called hierarchical definition
tree.

The hierarchical model provides a straightforward and natural method of imple-
menting a one-to-many relationship. However, a many-to-many relationship between
tecord types cannot be expressed directly in the hierarchical model. Such a relatior-
ship can be expressed by using data replication or virtual records.

The disadvantages of data replication are waste of storage space and the problem
of maintaining data consistencies. A virtual record is a mechanism to point to an
occurrence of a physical record. Thus, instead of replicating a record occurrence, a
single record occurrence is stored and a virtual record points to this record wherever
the record is required. The virtual record can contain some data that is common to a
relationship; such data is called the intersection data. The virtual record is the logical
child of the physical record that it points to, whieh is its logical parent.

The database using the hierarchical model results in a number of hierarchical

9.9 Summary 457

structure diagrams, each of which represents a hierarchical tree. These trees can be
interrelated via the logical parent/child relationship to form a set of spanning trees.
However, one can assume that the DBMS provides a single occurrence of a dummy
record type and all the hierarchical trees can then be attached to this single dummy
parent record. The roots of these trees can be treated as children of this dummy
record.

The data manipulation facility of the hierarchical model provides functions sim-
ilar to the network approach; however, the navigation to be provided is based on the
hierarchical model. The get command is used to retrieve an occurrence of a specified
record type that satisfies the specified conditions. The get next command is used for
sequential processing and the get next within parent is used for sequential processing
within a preselected hierarchy.

The database can be modified using the insert, replace, and delete operations.
When records to be modified are virtual records, detailed rules have to be specified
so that the modification, if allowed, leaves the database in a consistent state.

ordered tree logical parent where

preorder traversal logical child get next

child pointer intersection data get next within parent
sibling pointer paired bidirectional logical insert

hierarchical data model (HDM) relationship get hold

tree structure diagram DB-Status : replace

definition tree get delete

hierarchical definition tree get first hierarchical path
virtual record get unique control codes
replication get leftmost secondary index

Exercises

9.1
9.2
9.3

9.4
9.5
9.6

'I7

Write an algorithm to convert a network diagram into a hierarchical diagram.
Write an algorithm to convert a hierarchical diagram into a network diagram.

Consider the record types BOOK and CLIENT. kmplement the relationship to model the
waiting list of clients waiting to borrow a given BOOK.

Consider the record types BOOK_COPY and CLIENT. Implement the relationship to modei
the waiting list of clients waiting to borrow a given BOOK_COPY.

Comment on the statement that the HDM has limited network capabilities. Give an example
of a network that cannot be represented in an HDM.

Why does the association between parent and child record type in the hierarchical data model
not need the foreign key concept of the relational data model?

Figure A represents a hierarchical tree structure diagram for the hospitals in a certain area.
Write the data description statements to define the structure.

Chapter

10

Query
Processing

Contents

10.1
10.2
10.3

10.8
10.7
10.8

10.9
10.10
10.11

introduction

An Example

General Strategies for Query Pro«ulng
10.3.1 Query Representation

Operator Graphs

Steps in Query Processina
10.3.2 General Processing Strategies

Transformation into an Equivalent Expression
!wtodﬂnoﬂlohtlmnlnmm

10.5.1 Selection
10.5:2 Projection
10.53 Join
Statistics in Rstimation
Query Improvement
Query Evaluation
10.8.1 One-Variable Expressions
Sequential Access
Access Aid R
10.8.2 Two-Varable Expressions
-Sort and Merge Method
Join Sejectivity and Use of Indexes
Hash Method
Join Indexes
10.8.3 N-Variable Exgressions
Tuple Sebstitution
Decomposition
Access Aids in N-Variable Expressions
1084 Access Plan
Evaluation of Calculus Expressions
View Processing

A Typical Query Processor

10.1 Introduction 461

10.1

In this chapter we focus on different aspects of converting a user’s query into a
standard form and thence into a plan to be executed to generate a response

Introduction

Query processing is the procedure of selecting the best plan or strategy to be used
in responding to a database request. Tne plan is then executed to generate a résponse.
The component of the DBMS responsible for generating this strategy is called a
query processor.

Query processing is also referred to in database literature as query optimiza-
tion. However, bear in mind that optimization here is mostly in the form of improve
ment in light of the inexact knowledge of the status of the database. The optimization
done in practical systems is not necessarily the best. The optimal strategy may be
too difficult to evaluate and could require much more computing to improve on x
which on average may not be dramatically different from the one afforded through a
heuristic strategy.

Query processing is a stepwise process. The first step is to transform the query
into a standard form. For instance, a query expressed in QBE is translated into SQL
and subsequently into a relational algebraic expression. During this transformation
process, the parser portion of the query processor checks the syntax and verifies if
the relations and attributes used in the query are defined in the database. Having
translated the query into a given form such as a relational algebraic expression, the
optimization is performed by substituting equivalent expressions for those in the
query. Such equivalent expressions, which we focus on in Section 10.4, are more
efficiently evaluated than the ones in the transformed query. Substitution of such
expressions also depends on factors such as the existence of certain database struc-
tures, whether or not a given file is sorted, the presence of different indexes, and so
on. In the next step a number of strategies called access plans are generated for
evaluating the transformed query. The physical characteristics of the data and any
supporting access methods are taken into account in generating the alternate access
plans. The cost of each access plan is estimated and the optimal one is chosen and
executed.

We concentrate in this chapter on query processing for interactive usage on a
relational database management system (RDBMS). A compiler would process data-
base requests from batch programs. Techniques similar to the one to be discussed
here could also be applied to compiled queries. The overhead invelved in the query
processing of an interactive query that is unlikely to be repeated should not be too
high. Contrast this with the compilation of a batch query. A batch program is likely
to be executed many times. Thus, a more intensive search for an optimal plan could
be justified. However, the optimization of compiled queries is not guaranteed to
remain optimal since the status of the database changes over time.

In the hierarchical and network models, the user specifies navigation though the
database by indicating the low-level path to be followed through records. This path,
for instance, leads from the parents to the children record types in a hierarchical
database, or from the owners to the members record types (or from the members to
the owners) of sets in the network database. Since these paths are already indicated,
the onus of optimization is on the user. Nonetheless, even in these systems some

Chapter 10 Query Processing

represents course offered and, ignoring/the multiple sections of certain courses, rep-
resents 5,000 courses.

A given request can be expressed in a number of different ways in any language.
Consider the query: ‘‘List the names of courses higher than COMP300 and all stu-
dents registered in them.”’

The following are some different ways of stating this query in SQL and rela-

/tional algebra. In SQL:

select Std_Name,Course_Name

from STUDENT, REGISTRATION, COURSE

where STUDENT.Std# = REGISTRATION.Std# and
COURSE.Course# = REGISTRATION.Course# and
REGISTRATION.Course# > COMP300

or

select Std_Name,cl.Course_Name
from STUDENT, REGISTRATION, COURSE cl
where STUDENT.Std# = REGISTRATION.Std# and
REGISTRATION.Course# in

(select c2.Course#

from COURSE c2

where c2.Course# > COMP300 and

cl.Course# = c2.Course#)

or

select Std_Name,cl.Course._Name
from STUDENT, COURSE cl
where STUDENT.Std# in
(select REGISTRATION.Std#
from REGISTRATION
where REGISTRATION.Course# in .
(select c2.Course# h
from COURSE ¢2 .
where c2.Course# > COMP300 and
cl.Course# = c2.Course#))

In relational algebra:

TStd..Name,Course—Name{ O Course#>compioo (STUDENT |>i1 REGISTRATION
Std

D1 COURSE))

Course#
or

“Sld_Nm.Cowu_Nam(STUDENT .Edf (O'Course#>coup3m (REGISTRATION
D<I COURSE))
Course#

or
Tstd_Name,Course_Name(STUDENT 5;1 (O course#>compsoo REGISTRATION)
N# (Fcourse#>compz00 COURSE)

Couyrse:

10.2 An Exampie 465

Some of these illustrated forms may be better than others as far as the use of
computing resources is concerned. The DBMS must perform a transformation to
convert a query from an undesirable form into an equivalent one that uses less re-
sources and is therefore deemed better.

For the sample database, we get the following query processing costs tor the
different relational algebraic forms of the same query. Here, to simplify discussion,
we compare costs in terms of the number of tuples processed. In an actual system,
the cost would be given in terms of the processing cost and the 1/O cost measured in
terms of the number of block accesses required. This I/O cost depends, too, on the
size of the relation and block.

Let us examine the cost for the first relational algebraic expression tabulated in
Figure 10.2a. It involves a join of the relation STUDENT, containing 40,000 tuples,
with REGISTRATION, having 400,000 tuples. In this case, the referential integrity
constraint indicates that a tuple in REGISTRATION cannot exist unless there is a
tuple in STUDENT with the same Std#. Therefore, the result would be equal to the
number of tuples in REGISTRATION. If we use the brute force method of compar-
ing each tuple of STUDENT with each tuple of REGISTRATION, this join is ob-
tained by processing 40,000 * 400,000 tuples. ‘

If the STUDENT and REGISTRATION relations are sorted on the joining at-
tribute Std#, then the join can be obtained by processing 40,000 + 400,000 tuples:
If indexes exist on the joining attribute, one per relation, then access to the tuples is
not required unless the indexes indicate that there is a tuple in both relations with a
common value for the joining attribute. We discuss these aspects in Section 9.8,

The second join is between the result of the first join and the tuples of COURSE
involving a processing of 5,000 * 400,000 tuples. The result of this, again, would
be 400,000 tuples. This is followed by a selection for Course > COMP300. If we
assume that there are 500 courses whose course number is higher than COMP300,
the result would involve, let us say, 40,000 tuples. The final result of the query is
obtained by projecting these tuples on the attributes Std_Name and Course_Name
and involves processing 40,000 tuples. ‘

For the second relational algebraic form of the same query, the first join is
between the relations REGISTRATION and COURSE. This entails the processing of
5,000 * 400,000 tuples for unsorted relations. If both these relations were sorted the
join would involve processing 5,000 + 400,000 tuples. The result of this join is
400,000 tuples. We then select from the joined tuples those wherein the Course# is
greater than COMP300,, requiring the processing of 400,000 tuples to produce a
result consisting of 40,000 tuples. This is subsequently joined with the tuples of the
STUDENT relation, requiring processing 40,000 * 40,00 tuples or 40,000 +
40,000 tuples for unsorted and sorted cases, respectively. The final projection oper-
ation involves 40,000 tuples. These costs are tabulated in Figure 10.2b.

Let us now consider the third form of ‘the relational algebraic query. The selec-
tion is done before each of the joins. The selection on COURSE entails the process-
ing of 5,000 tuples to generate 500 tuples with Course# > COMP300. Similariy,
the selection on REGISTRATION involves processing 400,000 tuples to select
40,000 tuples. The join of the STUDENT with the selected tuples of REGISTRA-
TION involves processing 40,000 * 40,000 tuples to arrive at 40,000 resulting tu-
ples. This result is joined with 500 tuples selected from COURSE and entails a
processing of 500 * 40,000 tuples. The result is, as before, 40,000 tuples. We notice,
however, that the amount of processing is considerably reduced. These costs are
tabulated in Figure 10.2c.

468 Chapter 10 Query Processing

the verification of the existence of a relation (or attribute) has to be performed at the
time of the initial analysis of the query. For internal use, it is convenient to represent
queries using a procedural format. This rules out relational calculus and algebra for
internal representation, even though these formats have been used in a number of

qQuery processors. We use operator graphs for internal representation of queries in
this text.

Operator Graphs

An operator graph depicts how a sequence of operations can be performed. In
operator -graphs, operations are represented by nodes and the flow of data is shown
by directed edges. The graph visually represents the query and is easily understood.
Consider the query: *‘List the names of students registered in the Database course.’’
One possible algebraic formulation is:

wSId_Nam(GCaurse _Name = -Da‘aba“'(STUDENT M REGISTRATION M COURSE)

An operator graph for the above sample query is shown in Figure 10.3.
Equivalence transformations such as the earlier application of the selection op-

eration can be used to modify the graph. The graph clearly shows what the effect of

such a transformation would be. For most simple queries, the graph resembles a tree.

Later on we demonstrate how the graph can be used to discover redundancies in
query expressions.

Steps in Query Processing

The steps involved in query processing are as follows:

1. Convert to a standard starting point. We would use a relational algebraic
form and the operator graph as the starting point. We would also assume that
the query expression is in conjunctive normal form, that is, the query is of

the form p; \/ p, \/ . . ., where each disjunct pi is a conjunction of terms
t“ /\ tlZ /\ PR

-
S ————

Figure 10.3 Example of an operator graph.

RSt1d_Name

OCourse_Name=Database

D4
Std#

SN\

REGISTRATION COURSE

STUDENT

10.3 General Strategies for Query Processing N 469

10.3.2

2. Transform the query. The query is transforimed by replacing expressions in
the query with those that are likely to enhance performance. Note that the
choice of an equivalent form may be influenced by the existence of an index or
the fact that a relation is sorted.

3. Simplify the query. The query is simplified by removing redundant and
useless operations. We discuss query improvement in Section 10.7.

4. Prepare alternate access plans. The alternate access plans indicates the order
in which the various operations will be performed and the cost of each such
plan. The cost depends on whether or not the relations are sorted and the
presence or absence of indexes. The optimal access plan is chosen.

Steps 2, 3, and 4 are usually done in conjunction with each other and use statis-
tical information to derive the best possible form of the query and the associated
access plan. The query transformations are carried out by applying standard process-
ing strategies. We discuss some of these strategies for processing a query below and
discuss some equivalent forms in Section 10.4.

General Processing Strategies

Recall Example 4.3, in which we illustrated the decrease in the size of join when a
selection operation on one of the relations participating in the join was performed
before the actual join. Since selection reduces the cardinality of a relation, the join
would involve a relation with a smaller number of tuples and could be executed
faster. There are a number of similar general strategies used in query processing to
reduce the size of the intermediate and final results as well as processing costs. They
are described below.

1. Perform selection as early as possible. Selection reduces the cardinality of the
relation and, as a result, reduces the subsequent processing time.

2. Combine a number of unary operations. Consider the evaluation of
7x(oy(R)), where X, Y C R. Both the selection and projection operations can
be done on the tuples of R simultaneously, requiring a single pass over these
tuples and singular access to them. Similarly,

oci(02(R)) = ocinc2(R), wx(my(R)) = wxay(R)
If X C Y, then wy(ny(R)) = ©x(R)

3. Convert the cartesian product with a certain subsequent selection into a
join. Consider the evaluation of oy(R * S), where Y is, let us say, A 6 B and
A € R, B € S. In this case, the cartesian product can be replaced by a theta
join as follows:

RDAS
A0B

4. Compute common expressions once. A common expression that appears more
than once in a query may b& computed once, stored, and then reused. This is
advantageous only if the size of the relation resulting from the common
sxpression is small enough to be either stored in main memory or accessed
from secondary storage at a total cost less than that of recomputing it. Bear in

472

Chapter 10 Query Processing

4. Use associative and commutative rules for Jjoins and cartesian products.

R>1S =SD><R
RNSNTERD<1(SI><)T)E(RI><IS)!><]TE(TD<IS)D<]RE
R*S=8S=xR
R*S*TER*(S*T)E(R*S)*TE(R*T)*SE. ..

The order of the join and product 1s very important as it can substantially affect
the size of the intermediate relations and, therefore, the total cost of generating the
result relation.

Example 10.3 In Example 10.1, the expression

Ccourses>compsoo (STUDENT D] REGISTRATION) D<I COURSE)
Std# Course#

can be replaced by the more efficient expression:

(STUDENT [><l(aCo,,,,‘,#>c0MmREGISTRATION) B>
Std#

Course#
(aCourse#>COMP300 COURSE)
The above expression is equivalent to the following:

((Ocourse#>compzoo REGISTRATION) CN# (Ocourse#>compio COURSE)

D<I STUDENT) m

Std#

5. Perform selection before a join or cartesian product. Consider gc(R D<]
S). If the attributes involved in the condition C are in the scheme of R and not in S,
that is, ar(C) € R and attr(C) € S, then

oc(RD<1S) = g(R) D1 §

If the attributes involved in the condition C are in the scheme of S but not in R, i.e.,
attr(C) € S and attr(C), ¢ R, then

oc(R D>I'S) = R D< 0(S)

If the attributes’ involved in the condition C are in the scheme of R and §, i.c.,
attr(C) € R and attr(C) € S, then

oc(R D1 S) = o¢(R) D<1 0(S)

If C = C1 A\ C2 and the attributes involved in the condition C1 are from R, ie.,
attr(C1) € R, and the attributes involved in the condition C2 are from S, ie.,
attr(C2y € 8, then

oc(R DI S) = g¢(R) D] oc2AS)

IfC = C1 A C2 A\ C3 and the attributes involved in the condition C2 are only in
R,ie., attr(C2) € R A\ attr(C2) € 8, the attributes involved in the condition C3 are
only in S, i.e., attr(C3) € § N\ attr(C3), € R, and the attributes involved in the
condition C1 are in R and S, then

7c(R DU S) = o¢(oc3(R) D] ocx(S))

10.4 Transformation into an Equivalent Expression 473

The above equivalences also appty when the cartesian product operation is substituted
for the join.

Example 10.4 Consider the expression:

O S1d#> 1234567\ Course# = COMP3S3N\Course_Name = ‘Database'(GRADE >] COUR ’%

It is equivalent to:

T Course# = COMP353((0'Std#> l234567(GRADE)) > (GCourse_Namt = ‘Database’
(COURSE))) =

It is possible to combine projections with a binary operation that precedes or
follows it. Only the attribute values specified in the projection need to be retained.
The remaining ones can be eliminated as we evaluate the binary operation.

6. Perform a modified projection before a join. Note that when a projection
operation is preceded by a join, it is possible to push the projection down before the
join, but the projection acquires new attributes. This necessitates performing the orig-
inal projection after the join. However, unless the cardinalites of intermediate rela-
tions are reduced, which would reduce the cost of the join operation and the subse-
quent size of the joined relation, the usefulness of pushing a projection before a join
is questionable.

mx(R > S) = mx(mg(R) D> 75«(S))

where R’ = RN (X US)and ' = S N (X U R), and R, S represent the set of
attributes in these relation schemes. When X = R U S — R N S, there is no
improvement because R’ = R and §' = S.

Example 10.5 Consider the relations GRADE (Std#, Course#, Grade) and COURSE
(Course#, Course_Name, Instructor). The expression

TStd#,Course. _NW(GRADE > COURSE)
is equivalent to:

'n_'Std#.Course_Name(ﬂStd#.Caurse#(GRADE) > '"Course#,Course_Name(COURSE))

However, consider the relations STUDENT (Std#, Std_Name) and
REGISTRATION (Std#,Course#). The expression

Ts1d_Name Coursew(STUDENT D1 REGISTRATION)
is equivalent to:

Tsia_Name,Course#Tsia# sd_Name(STUDENT) D<I W5 Courses
(REGISTRATION))

which is equivalent to the original query:
Tl's,d_Nm_co,‘,“#(STUDENT N REGISTRATION)) |]

7. Commuting projection with a cartesian product. Consider the expression
mx(R * S). This expression can be replaced by the following equivalent one under

476

Chapter 10 Query Processing

10.5.1

In this chapter we restrict ourselves to centralized database systems, for which
the communication cost would be zero. We return to distributed query processing in
Chapter 15.

Selection, projections, and joins affect the sizes of the resulting relations. The
effect of projection is simple to calculate if the sizes of the attribute values are
known. The effect of selections and joins is more involved.

We are interested in the size of the result relation for several reasons. First, the
result relations could be intermediate relations and their size would be required to
determine the cost of the succeeding part of the query expression. Second, the result
relation may be too large to be stored in primary memory and would have to be
written to secondary storage. We may want to compare the cost of this access with
alternate equivalent query expressions.

Let us assume that the values of an attribute are uniformly distributed over its
domain and that the distribution is independent of values in the other attributes.
These assumptions are usually made for simplifying cost calculations, and it should
be noted that these assumptions cannot be justified on any other grounds. In practice
both uniform distribution and independence are unlikely to occur. In that case, the
expressions become complicated and are beyond the scope of this text.

Selection

Let T = oc (R) represent the selection of relation R on condition C, and let C be a
simple clause of the form R[A] = constant. Before we can estimate the size of the
resultant relation we must possess some knowledge about the value distributions, that
is, the number of times an attribute takes a particular value. We can simply assume

that each value occurs with equal probability. Then the expected number of tuples in
relation T is given by

1+[R|
IRIA]|
where |R[A]| is the number of distinct values for attribute A of relation R. The factor
1/[R[A]] is known as the selectivity factor and is usually represented by the symbol

p (tho). As illustrated in Example 10.10, the nature of the data may allow an esti-
mation of some selectivity factors.

|T| =

Example 10.10 Recall that in the university database example, the assumption that each

student is registered in 10 courses is a reasonable assumption. Therefore,
we expect that

Osas =1234567(REGISTRATION)
will have ten tuples and
O Course# =compas3(REGISTRATION)

will have 80 tuples if there are 5000 courses. We recognize that in reality,
there will be considerable variations on these values. However, we can use
them as estimates. W

10.5 Expected Size of Relations in the Response 477

10.5.2

As discussed in Chapter 3, it is unfortunately not reasonable to assume uniform
distribution of values in all cases. Uniform distribution assumption is widely used
nonetheless for estimating costs in choosing a query processing strategy. We should
therefore bear in mind that this is just an estimate.

Having generated the relation T (consisting of the tuples of relation R, satisfying
the predicate C, involving the attribute A), suppose we need to estimate the number
of distinct values for the attribute B in T. Note that B # A and the number of distinct
values for B in the relation T is given by |T[B]].

We assume that the occurrence of a value in attribute'B is unaffected by the
values in A. In other words, the distributions are independent. Under these assump-
tions, it can be shown that this problem is equivalent to the so-called colored balls
problem. In this problem we have n balls of m different colors. (Apart from color,
all balls are identical.) Each color is represented by the same number of balls. We
must determine the expected number of-different colors represented by a random
selection of t of these n balls.

_ It can be shown that the expected number of colors in these t balls is given by
the following expression:

t .
expected number of colors = m * [l -1 m 1)/‘m LY I]
. i=1 n—i+1

We can estimate |T[B]|, the expected number of different values for the attribute
Bin T, by the following substitution in the above expression: n = [R|, m = [R{B]],
and t = [T|.

However, the computation involved in evaluating this expression is consider-
able. As a result, a number of different approximations to the above expression have
been proposed. We present below one of the more widely used approximations. This
approximation is given by the following formula for different sizes of the relation T:

T if 7] < ——‘sz""
T + [RiBI) .. [RIB

mizyf = | {0 +3’ LBI) ¢ IR[2 I <1y <2 ReBl
IRi]| if [T) > 2+ RB]]

The size of each tuple in relation T is the same as in relation R.

Projection

The cardinality of the resulting relation could be affected by a projection because
duplicates would be deleted; however, most commercial database systems only delete
duplicates as a result of explicit commands. :

T = nx (R)

where X is a set of amibuteé, X CR.
When X is a single attribute, or contains the key attribute of R, and we represent
the single or key attribute by A, then

IT| = [RIA]|

478

Chapter 10 Query Processing

10.5.3

If A is a key attribute of R then |T| = |R].
When X is a set of attributes, then

IT| = I [RIA]|
AjeX
In the above estimation of the result we are assuming that the relation is a

cartesian product of the values of its attributes. Such an assumption is rarely justified.

We can take this as the worse case estimate. The upper limit in the above expression
is given as:

ITl < IR|

The size of the tuples of T is the sum of the size of the attributes in X.

Join

The join operation is very common in relational database systems. The size estima-
tion for the result of a join is somewhat more complicated than that of selection
because the cardinality of thé result relation depends on the distribution of values in
the joining attribute. Furthermore, the cost of evaluating a join is not reflected in the

.size of the result. The cost depends on the size of the relations being joined. We are,

however, interested in estimating the size of the result, since it could be used in
subsequent operations in evaluating a query.

Since the size of the result depends on the values of the joining attributes and
the distribution of these values, we shall consider a number of special cases.

Let

T=R P §
RA=SB

Estimating the cardinality of T is complex because it is difficult to estimate
correctly the number of tuples of each relation that join with tuples of the other
relation. In the worse case the join is equivalent to a cartesian product; this occurs
when the operand relations do not share attributes defined on common domains. In
such cases, the cardinality of the result relation is given by:

IT| < [R| + ||

This value of cardinality is much too large for most practical databases. We
consider a number of special cases below, assuming a uniform distribution of values.

1. Let {A} represent the set of values that the attribute A takes in the relation R.
The number of distinct values for attribute A is given ‘Py [R[A]|. We assume uniform
distribution of these values and further assume that these values will also be in rela-
tion S. In this case, we could conclude that there are |S|/|R[A]| tuples in S for each
value for attribute A. Therefore, each tuple in R joins with |S|/|R[A]] tuples in S and
the number of tuples in T is given by:

10.5 Expected Size of Relations in the Response ‘479

Let {B} represent the set of values that attribute B takes in relation $. The num-
ber of distinct values for attribute B is given by |S[B]|. Again, using uniform distri-
bution and further assuming that these values would also be in relation R, we could
conclude that there are |RJ/|S[B]| tuples in R for each value for attribute B. This
means that each tuple in S joins with [R)/|S[B]| tuples in R, and it follows that the
number of tuples in T is given by:

[R[* [s|

= "l

If {A} # {B}, then |R[A)] # |S[B]| and the values for |T|, obtained by the
expressions ([R| * |S|)/|R[A]| and ([R]| * |S|)/|S[B]|, would be different. This indicates
that there are tuples in R and S that do not participate in the join. Such tuples are
called dangling tuples.

The greater, average, or the lesser of (|R| * |S|)/|R[A]| and ([R| * |S|)/|S[B]| could
be taken as the estimate of the size of T.

2. If A is the key of R, then every tuple of S can only join with one tuple of
R, i.e., the cardinalitv of the resultant relation cannot bé greater than the cardinality
of S:

IT| < 1]

3. Another possible derivation of an estimate, which takes into account the size
of the domain and which estimates a much smaller value for the cardinality of the
join, is as follows. The number of distinct values of A in R and B in S is [R[A]| and
IS[B]], respectively. Assuming uniform distribution as before, each value of A in R
{B in S) is associated with |R|/|[R[A]| tuples (|S|/|S[B]]). Thus, for each value of A (or
B) in the join, we could derive the upper limit on the number of tuples in the join as
given below:

—-———IRI s tuples -
IR[A]| * |S(B]] |
The above will hold if the same set of values are in both R and S. Since the
same set of values is unlikely to be in the two relations, the expected number of
common domain values is much lower. This expected number depends on the prob-
ability of any value appearing in both the relations. The expected number of distinct
values of A in R (or B in S) that takes part in the join is given by:

[R[A]| * S[B]|
ID|

where |D] is the cardinality of the domain of A and 5. Therefore, the expected act::al
size of the join is given by:
_ RiAy + s8], IR+ S|
~ - |D| IR(A]| = [S(B]|

_Ri*Is|
, I

The size of tuples of T equals the sum of the sizes of tuples of R and S, minus
the size of the joining attribute A (o1 B).

IT}

482 ~ Chapter 10 . Query Processing

As we discussed under rule 6 in Section 10.4, a projection cannot be simply
moved down. Given relations R and S defined on the relation schemes R(X,Y,Z)
and S(X,Y,W), where W. X, Y, Z are sets of attributes, then

wx(R ‘>Y<1 S) = wx(wx y(R) DYQ x,v(S))

In other words, as the projection is pushed down, it acquires additional attri-
butes. These additional attributes finally have to be eliminated by the original projec-
tion. This is illustrated in the following example.

Example 10.12 Consider the query: ‘‘Compile a list of instructors and the grades they as-
sign.”’ The relational algebraic expression for this query is given below:

ﬂlnstrucmr,(irade(GRADE, >4 COURSE)

_ The corresponding query tree is given in Figure Bi. To push the pro-
jection down the tree, we would have to include the common attribute
Course# of GRADE and COURSE in both branches of the join operation
as indicated in Figure Bii.

Figure B Pushing projection down the query tree.

Rinstructor.Grade

Course#

' GRADE COURSE
(i)

nstructor,Grade

— KX
r Course# l

RCourse#t Grade (GRADE) RCourset Anstructor (COURSE)
(1)]

Exaﬁvpha 10.13 illustrates the effect of pushing the projection operation down the
query tree:

Example 10.13 | Consider the query: ‘‘List the names of the students in tne Database
course.’’ The relational algebraic expression for this query is given below:

Ts1a_Name(STUDENT D<1 15,09 course#(REGISTRATION
Std#
Dq (UCouru_Name = ‘Dalabasc'(COURSE)))

Course#

10.7 Query Improvement i 483

This expression can be simplified by moving the second projection fur-
ther to the right in the expression, before the join on Course#. In the case
of the relation REGISTRATION the projection is the entire relation and for
COURSE the projection is on the attribute Course#. The modified expres-
sion is shown below:

Tsa_name(STUDENT D><t (REGISTRATION
Sid#
G N# T Course# T Course__Name = ‘Dambue'(COURSE)))

The effect of pushing the projection operation down the query tree is
illustrated in Figures Ci and Cii. Since the projection on the attributes Std#
and Course# of the relation REGISTRATION is the entire relation, the
operation is redundant and dropped. Course# is the only attribute appearing

Figure C Effect of pushing down projection operator.
uSId_Name
P
Std#
STUD RStd#t Course
>
l—; Course# - i
REGISTRATION OCourse_Name=Database
COURSE
@)
RS1d_Name

STUDENT

St
l C ourse# -
TRATT

REGIS NCoursek -

OCourse_Name=Database

COURSE
@i)

486

Chapter 10 Query Processing

Figure G Final optimization for Example 10.14.
nSId_Nume
]
STUDENT Mgy
i ,
RCourse#t Std#t RCoursett
OGrade<C OCourse_Name=Database
| |
| ,
GRADE COURSE

l Finally, we can push down the selections and projections to give us the
tree of Figure G. W

Query Evaluation

10.8.1

We have presented a sampling of the many different query ‘improvement strategies.
Having found the best equivalent form of a query, the next step is to evaluate it. We
classify the query evaluation approaches according to the number of relations in-
volved in the query expression. Thus, we distinguish between the approach to be
used when the query expression involves one, two, or many relations. These are
known as one-variable, two-variable, and N-variable expressions, respectively. The
last stage of query processing deals with the execution of access plans. A number of
different query evaluation strategies have been proposed. Here we look at some com-
monly implemented techniques.

One-Variabie Expressions

~ A one-variable expression involves the selection of tuples from a single relation.

Let us consider the SQL query:

select al, . . ., ak
from R
where p

The simplest approach would involve reading in each tuple of the relation and
testing it to ascertain if it satisfies the required predicates. This is illustrated below.

10.8 Query Evaluation 487

Sequential Access

Use sequential access to read in every tuple of the relation. If the tuple satisfi
qualification conditions, include the projection of the tuple on the target list
in the result relation. The algorithm is given below:

result := & {empty}
for every rin R do
if satisfies (p, 1)
then result : = result + <r.al . . . r.ak>

where <r.al . . . r.ak> represents the tuple obtained by concatenating the p
tions of r onto the attributes in the target list.

If the relation has n tuples that are blocked as b tuples/block, then for sequential
access to the tuples, the number of block accesses is [n/b]. In dealing with large
relations, this is an inefficient approach, as illustrated in Example 10.15.

Example 10.15 Consider the REGISTRATION relation to evaluate the query: ‘‘Generate the
list of students (Std# only) enrolled in COMP353.”” The SQL version of
this query is:

select Std#
from REGISTRATION
where Course# = COMP353

We use sequential access-to the tuples of REGISTRATION. Suppose
there are 400 tuples per block of secondary storage devices. Reading in all
tuples of REGISTRATION would-involve access to 400,000/400 = 1,000
block accesses. W

Access Aid

The number of tuples needing to be accessed could be reduced if the relation is sorted
with respect to one or more attributes. In such cases, if the predicates involve one or
rore attributes on which the relation is sorted, then only some of the tuples need be
accessed. Use of indexes can provide faster access to the required tuples.

Example 10.16 Let us reconsider the previous example of generating the list of students
enrolled in COMP353. If the tuples of REGISTRATION are sorted in order
based on Course# and the records are clustered with 400 tuples per block,
we could do a binary search on these blocks. Locating the block containing
the required course would limit access to about 10 blocks. This will be
followed by access to at most one additional block. The last block accessed
would be needed only if some 80 tuples with the required course number
were not in the same block. This gives us a total of approximately 11 block
accesses. W

490 Chapter 10 Query Processing

number of tuples per block, bfg, for the STUDENT relation is 200, the bfy
for REGISTRATION is 400, and up to'5 blocks of the STUDENT relation
can be kept in main memory. The nested loop using block access with STU-
DENT, the smaller relation in the outer loop, would involve a total of
40,200 disk accesses. If the smaller relation in the outer loop could be kept
entirely in memory, then the number of disk accesses would be 1200. Note
that this method requires sorting the result relation on the attribute Course#
to obtain class lists. W

Sort and Merge Method

Relations are assumed to be sorted in the sort and merge method. If they are not
sorted, a preprocessing step in the query evaluation sorts them. These sorted relations
can be scanned in ascending or descending order of the values of the join attributes.
Tuples that satisfy the join predicate are merged. The process can be terminated as
indicated in Algorithm 10.1 on page 491.

In the algorithm, we join the relation R with relation S and the join predicate is
R.A = S.B. We assume that the relations have been sorted in ascending order with
respect to the attributes A and B and that sufficient space for an appropriate number
of buffers in available. The tuples are placed in the buffers by the file manager and
the algorithm reads the tuples from these buffers. R and S 1 are pointers that point
to the corresponding tuples in the buffers. We assume that once the last tuple in a
buffer has been read, the buffer is refilled. If the joining attributes are not the primary
key of the relations, a many-to-many relationship could exist via the joining attri-
butes. We use an array U where pointers to tuples of relation S that have the same
attribute value as the current tuple of R are stored. These tuples join with the current
tuple of the relation R and allow a single pass over the tuples of both the relations.
A tuple whose pointer has been stored in this array locks the tuple so that the buffer
containing it is not released. An attempt to read past the last tuple in the relation
would raise the eof (end-of-file) condition. The algorithm could be easily modified
to include cases where the join involves more than one attribute.

The number of accesses for Algorithm 10.1 is given by:

[IRI/bfx] + [|S/bfs] + Res + Scs

where Rcs and Scs are the costs of sorting the relations, assumed to be equal to the
number of accesses required during the sorting of the relations R and S, respectively.
The sort costs depend on memory availability and the number of runs produced in
the initial sort stage. For example, if we have enough memory to perform a
max(N,M)-way merge, where the number of runs produced for R and S are N and
M, respectively, then the number of accesses required for the join is as follows:

Initial read: [[R|/bfg] + [|S)/bfs] blocks

Writes of the sorted runs: [[R|/bfg] + [|S|/bfs] blocks
Read in merge phase: [[R|/bfg] + [|S]/bfs) blocks
Writes of the join: [|T|/bfy] blocks

Mote that T is_'the result relation and bf; is ine blocking factor for it. Similar
calculations can be done for other memory sizes.

10.8 Query Evaluation 491

Algorithm i
10.1 Sort-Merge to Include a Many-to-Many Relationship
Inpuc: R, S, the two relations to be joined on attributes A and B, respectively.
Qutput: T, the relation that is the join of R and S (concatenation of the attributes of R

and S, including the attributes A and B).

begin {sort-merge}
T := empty
sort R by A valucs and S by B values in ascending order
read (R) : v
read (S)
while not (eofR) ar eoﬂS)) do (* main while loop ¥)
begin
while not(eof(R) or eofiS) or R1.A + $1.B) do
(* find a join value *)
ifRt.A<S?t1.B
then read(R)
else read(S)
if not (eof(R) or eafiS))
then

:UIn]?ST

end v LR
while R A = RcmAaadmgaa(R)l
BT - begin : =

Jori =1 ton do
T:=T + R JUGlT R
read(R) (*does another tuple of Rm mﬂ! i
themmeswhosepmnm

end) o
" end (*main while loap‘) 4
end (*sort-merge*) i
L ;

496 Chapter 10 Query Processing

10.8.3 N-Variable Expressions

An n-variable expression involves more than two variables. The strategy used here
is to try to avoid accessing the same data more than once. One method of imple-
menting such expressions is to simultaneously evaluate all terms of the query. There-
fore, if a number of terms in the query require unary operations on the data accessed,
these could be done in parallel. If the data accessed participates in binary operations,
these binary operations are partially evaluated.

General n-variable queries can be reduced for evaluation by either tuple substi-
tution or decompusition.

by

o Tuple Substitution

In the tuple substitution method we substitute the tuples for one of the variables.
Consequently, we reduce the query to K, * (n—1)-variable queries, where K, is the
cardinality of the substituted variable. The process is repeated until we get a set of
one-variable queries. This process is an extension of the nested loop approach and
requires the processing of tuples equal to the cartesian product of all relations par-
ticipating in the query. .

Example 10.22 | Consider the query: ‘‘Compile a list giving the Std#s and Std_Names of
students who, having failed the Database course, are taking it again.”’ Note
that we assume that the GRADE relation contains the best grade a student
received in a given course. For a student who failed a course and subse-
quently passed it, the only tuple in the GRADE relation would be the one
inyolving the second attempt!

The SQL and relational algebraic forms of this query are:

select Std#, Std_Name
'from STUDENT s, REGISTRATION r, GRADE g, COURSE ¢
where s.Std# = r.Std# and \
c.Course_Name = ‘Database’ and
g.Std# = s.Std# and
g.Course# = c.Course# and
g.Grade = F and '
r.Std# = g.Std# and
r.Course# = c.Course#

ﬂs,d#'s,d_Nm(STUDENT >d ﬂs,d#(REGISTRATION >
TStd# . Course# (oGrad¢=F/\Course_Nam¢=‘Dmbne‘(GRADE > COURSE)»)

This query can be evaluated by subsuituting the value of each tuple of the
four relations involved in the query. The number of tuples to be processed
is approximately equal to 40,000 * 400,000 * 600,000 * 1,000. W

Even though the substitution method will always work, it should be avoided
because of the exponential increase in the number of tuples to be: processed.

10.8 Query Evaluation 497

Figure 10.4 Moving selection and projection down the query tree.

TSttt Std_Nume

]
STUDENT Tsn

|
T

REGISTRATION nSl(IR Coursek

| OGrade = F lerse_Nunm:Dm'.\hase

!
| L_.J | :
|

|

| >
AS1d#t Courseh RCourseh

GRADE COURSE

Note that we could use the optimization strategles discussed earlier to reduce
the cost. One such operation involves moving the selection operations, as indicated
in the query tree of Figure 10.4. This optimization scheme leads us to modify the
tuple substitution scheme. In this modified scheme, the cardinality of one or more of
the participating relations is reduced by selection or projection.. For instance, instead
of substituting all tuples of GRADE and COURSE, these relations could be scanned
once and their cardinality restricted to those tuples that satisfy the query predicates.

Similar query modifications could be achieved in SQL or QUEL by a nested
select statement or by using temporary relations, as illustrated below.

Using nested select in SQL:

select Std#, Std_Name
from STUDENT s
where s.Std# in
(select r.Std#
from REGISTRATION r
where r.Course# =
(select c.Course#
from COURSE c
where c.Course_Name = ‘Dataoase’) and
r.Sud# =
(select g.Std#
from GRADE g
where g.Grade = F and
g-Course# =

Clulpter 10 Query Processing

Figure 10.5

Decomposition of query of Example 10.22.

REGISTRATION. TEMP STUDENT
1

I I
GRADE_TEMP2 REGISTRATION
|
I I

GRADE_TEMP1 COURSE_TEMP

GRADE COURSE

GRADE_TEMP2 and REGISTRATION to evaluate REGISTRATION_TEMP. 'ine
latter is used in the final stage of the query to compile the required list. In this
decomposition, evaluation of GRADE_TEMP! and COURSE_TEMP involves a
one-variable query. GRADE_TEMP2 is a two-variable query, as are REGISTRATION
TEMP and Q. Suppose there are 60,000 tuples in GRADE_TEMP1 with a grade of
F (obtained after processing the 600,000 tuples of GRADE) and one tuple with the
course name of Database (obtained after processing 5,000 tuples of COURSE). The
number of tuples in GRADE_TEMP2 would be, let us say, 6. If only two of these
students are reregistered, the tuple substitution at the point of evaluating Q involves
finding only the names of these two students who have failed the Database course
and are reregistered in the course. This tuple substitution results in the following:

retrieve Std#, Stud_Name where Sid# = 1234567
retrieve Std#, Stud_Name where Std# = 7654321

In the decomposition approach, an n-variable query is replaced by a sequence
of single variable queries. If this is impossible or undesirable, the query is split into
two subqueries with a single common variable between them. Such subqueries could
be recursively decomposed until they become single variable queries or irreducible.
A query is reducible if it can be separated into two subqueries with a common vari-
able, each of the subqueries having at least two variables. An irreducible subquery
cannot be reduced and must be evaluated.

Some of the relations involved in the subqueries obtained by the reduglion pro-
cess can be reduced in cardinality by projection or selection. In this manner, the
original query is replaced by a sequence of smaller queries. Figure 10.6 illustrates
the decomposition of a query in the form of a tree.

The decomposition algorithm (Wong 76) consists of four subalgorithms referea
to as reduction, subquery sequencing, tuple substitution, and variable selection. In
the reduction subalgorithm, the query is separated into irreducible components. These
are evaluated in an order determined by the subsequency subalgorithm. Each
subquery is evaluated in order and the result of the evaluation is used in tuple sub-
stitution. Optimization is attempted by determining the sequence in which the
subqueries are to be evaluated and selecting the variables for which the tuple substi-

